Elliptic problems in variable exponent spaces
نویسندگان
چکیده
منابع مشابه
Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...
متن کاملInterpolation in Variable Exponent Spaces
In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.
متن کاملOn Variable Exponent Amalgam Spaces
We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...
متن کاملAnisotropic quasilinear elliptic equations with variable exponent
We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.
متن کاملStructural stability for variable exponent elliptic problems. II. The p(u)-laplacian and coupled problems
We study well-posedness for elliptic problems under the form b(u)− div a(x, u,∇u) = f, where a satisfies the classical Leray-Lions assumptions with an exponent p that may depend both on the space variable x and on the unknown solution u. A prototype case is the equation u− div ( | ∇u| ∇u ) = f . We have to assume that infx∈Ω, z∈R p(x, z) is greater than the space dimensionN . Then, under mild r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2006
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700035644